An OGC/SOS Conformant Client to Manage Geospatial Data on the GRID

CROSS-Fire Project

António Esteves, Marco Caldas, António Pina, Alberto Proença

University of Minho

IBERGRID'2010 Braga :: 26th May 2010

AGENDA

- Cross-Fire project and Firestation application
- Identification of the present task goals
- SWE standards (SOS in more detail)
- Weather station used to test the SOS
- Application that populates the SOS database
- Case study: a WPS algorithm (SOS client) that accesses geo-referenced spatial data
- Conclusions and Future work

Cross-Fire Project

CROSS-Fire : Collaborative Resources Online to Support Simulations on Forest Fires

Support:

- Portuguese NGI (INGRID):
 - FCT grant GRID/GRI/81795/2006
- JRU Portugal:
 - EELA2: E-science grid facility for Europe and Latin America. FP 7, INFRA-2007-1.2.3

Project Goals

To <u>scale</u> from the desktop towards a <u>service-oriented</u> information system.

□ To benefit from <u>Grid</u> infrastructure.

To provide <u>decision-makers</u> with a persistent set of independent high-level services.

□ To <u>share</u> geospatial information.

□ Main case study: forest fires.

□ Fire spread simulation application: Firestation.

4

CROSS-Fire Platform

□ A core <u>WPS layer</u> based on 52North implementation

- Business Logic
 - to handle the Firestation algorithms
- Grid Services
 - to interface with the GRID infra-structure
- Geospatial Services
 - ➤ to interface between clients and the SDIs → a collection of Web services that run as WPS algorithms
- Two <u>external infrastructures</u>:
 - SDI platform
 - GRID

Firestation Application

- An integrated system
 - Three modules to compute:
 - Wind field: Canyon and Nuatmos models
 - Navier-Stokes solver and analytic solution
 - Fire Weather Index of the Canadian system
 - Fire propagation over a complex topography:
 - topography (fuel and altitude), wind conditions, control parameters
- □ Is being ported to operate on the Grid: G-Firestation
 - GeoServer-based SDI layer to exploit geospatial services for data access and processing.
 - 52North-based OGC/SWE conformant layer to access CP relevant data sources.
 - A graphical user interface to access the platform facilities.

Firestation Application

7

Present Task Goals

To integrate <u>dynamic geospatial data</u> from meteorological (in-situ and satellite) sensors on the CROSS-Fire grid-based risk management decision support system.

To use <u>standard services</u> and data <u>encodings</u>:

- From OGC Sensor Web Enablement (SWE), WCS, ...
 - SensorML, TransducerML, O&M.
 - ▹ SOS, SPS, WNS, SAS/SES.
- Based on 52North implementation.
- To describe, register, and discover sensors.
- To store and access sensor observations.

SWE Standards

- □ SensorML → a <u>functional model</u> of the sensor system, rather than a detailed description of its hardware.
- □ Observation & Measurements (O&M) → a <u>framework</u>, a <u>conceptual model</u> and an <u>encoding</u> formalized as an application scheme.
- □ Sensor Planning Service (SPS) → an interface to task a sensor system.
- Sensor Alert Service (SAS) → an interface for a web service to publish and subscribe alerts from sensors.
- Web Notification Service (WNS) → an interface for a service to interchange asynchronous messages with other service(s).
- Sensor Observation Service (SOS)

Sensor Observation Service

- Defines a standard web interface to request, filter, and get observations and metadata from sensors.
- Operations:
 - getCapabilities → a mandatory operation used to request metadata about the potentialities of the SOS service.
 - describeSensor → a mandatory operation used to access information about a sensor, returning a SensorML or TML document. A <u>SensorML</u> document specifies (at least) the <u>location</u> of the sensor and the <u>phenomena</u> it monitors.
 - getObservation → a mandatory operation used to request observations, encoded in <u>O&M</u>. A request, may include the <u>offering</u> we are interested in, a time filter, the procedure, the observed property, the feature of interest, the result, the result model, and the type of answer.

Sensor Observation Service

• Operations:

- registerSensor → an optional operation for a client to register a sensor on SOS. The client can only insert observations belonging to a sensor already registered with the SOS.
- insertObservation → operation for a client to insert observations in the system associated with a sensor.

SWE Standards Interaction Scenario

13

Weather Station (WS) Used to Test SOS

Davis VantagePro2

- A base station
- A sensor suite:
 - rain collector
 - temperature sensor
 - humidity sensor
 - > anemometer (wind speed and direction)
 - barometer
 - ▶ ...
- These are the relevant sensors for Firestation.

Application that Populates the SOS DB

- The remote Vantis WS is connected to an FTP server.
- To retrieve the meteorological data from that WS it was developed a specific application.
- The retrieved data is processed and inserted in the SOS database.
 - It was necessary to implement a client version of the SOS insertObservation operation, and
 - To have registered previously the sensors on SOS.
- It was used a PostgreSQL database.
- The application was implemented in JAVA.

Application that Populates the SOS DB

- To be self-configurable, the application reads a configuration file at start up. The configuration defines values for the following parameters:
 - The FTP server: IP, username and password.
 - The files to download.
 - The application mode of operation: frequency of access to the FTP server, if backup downloaded file or not, the files' storage place.
 - A section with the list of tags to be processed and inserted into the SOS database.
- □ The application consists of 3 parsers:
 - For the configuration file.
 - For the file generated by the weather station.
 - For the SOS answer. esteves@di.uminho.pt

Application that Populates the SOS DB

- This is an SOS client implementation to mediate the interaction between WPS and SOS.
- WPS is a OGC standard used to make calculations in a standard way through the Internet.
- □ WPS mandatory operations are:
 - getCapabilites
 - DescribeProccess
 - Execute
- The facilities necessary for the WPS algorithm are implemented as a GetObservation class.

- To implement the GetObservation class it was necessary to develop other classes:
 - CreateDoc → It is responsible for creating the XML document to be sent as a request to the SOS.
 - GetHTTP → It allows us to send requests to the SOS and receive the answer.
 - ObservationOffering → It is a support data class to store the data that will be returned by the <u>getStations</u> method from GetObservation class.

The GetObservation class provides 2 methods:

- getStations → lets WPS to know which weather stations are located in a given region.
- getData \rightarrow allows WPS to consult the SOS database.

getStations flowchart:

```
getStations ()
{
   Send a getCapabilities() request to the SOS;
   Process the Capabilities doc returned by the SOS;
   Apply a spatial filter to the processed data;
   Store data about stations on ObservationOffering
      class;
   Return ObservationOffering to WPS;
}
```

getData flowchart:

```
getData ()
{
    createDoc();
    Fill the XML doc with the request data;
    The XML doc is sent to the SOS by GetHTTP;
    The request result is parsed and placed on HashMap;
    The HashMap is returned to the WPS;
  }
```

For validation purposes, we decided to implement a graphical user interface (GUI) to the WPS algorithm (SOS client).

SOS client: Operations

🕌 SOS client 💶 💷 Σ	3
getCapabilities	
registerSensor	
getObservation	
describeSensor	
insertObservation	
E <u>x</u> it	

SOS client: registerSensor (1)

SOS client: registerSensor (2)

ID VantisWSgualtar easting -8.39562- northing 41.56116 altitude 50	coordinates system (EPSG) 4326 🗣	offering ID Gualtar Description Davis vantage pro2
 Active Mobile Phenomenon List All mass WaterTemperature WindDirection AtmosphericPressure Radiation Speed TMBand1 TMBand2 TMBand3 TMBand4 TMBand5 TMBand6 TMBand7 waterlevel CloudCover Precipitation1Hour 	To add windSpe windDire AirTempi Relativel Precipita	Add phenomenon erature 8 Humidity ation 9 Register

esteves@di.uminho.pt

SOS client: getObservation

Teste	UM							4	urn:ogc:def:phenome	non:OGC:1.0.30:rain
result of 3 result of 4						sult of 4				
Start [Date 1	.6-11-	2008 00:00:0	E	ind Date	16-03-2009 23:59:59	Get Observation	7		
•••••	•••••	••••		6	5					
			Date			Observed Property	Value	Uni	t	1
Thu	Nov	27	05:10:00	GMT	2008	windDirection	229.0		deg	
Mon	Dec	29	23:55:10	GMT	2008	windDirection	248.0		deg	
Thu	Nov	27	05:10:00	GMT	2008	temperature	19.0		°C	
Mon	Dec	29	23:55:10	GMT	2008	temperature	19.0		°C	
Thu	Nov	27	05:10:00	GMT	2008	windSpeed	2.4		m/s	
Mon	Dec	29	23:55:10	GMT	2008	windSpeed	0.9		m/s	
				r	esu	It of 7				

SOS client: describeSensor

esteves@di.uminho.pt

Conclusions

- The main reason to implement a new SOS client, was the necessity of interacting with WPS.
- The developed SOS client is functional and fully compliant with SOS, SensorML, and O&M standards from OGC.
- With a slight modification of the application that populates the SOS database, the implemented client works with any weather station.
- □ The client supports spatial and temporal filters.

Future Work

- We are working on the integration of other types of spatial data (such as satellite images) on CROSS-Fire.
- Several projects, satellites, and instruments were evaluated.
- We consider the utilization of MODIS instrument.
- □ The data we are interested in is:
 - land coverage (vegetation)
 - burned areas.
- The information will be provided as coverages by a WCPS service.

Thank You for your attention

QUESTIONS?

IBERGRID :: Braga, 24-27 May 2010

esteves@di.uminho.pt

30